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In this report, we introduce zipper assembly as a simple and Au
general approach to complex functional architectures on conducting il | )
surfaces (Figure 1). In domains such as organic optoelectronics, reeee l
reliable access to sophisticated synthetic architectures is often il
essential to create significant functidr?. Zipper assembly was NDI
conceived on the basis of early findifg®lated to the Vernier
assembly, where mismatches of rod length led to higher-order [ @ & 12
assembly of mixed rigid-rod molecules. This characteristic implied
that rigid-rod molecules with “sticky-ends” could serve as powerful = - ='= =
modules to create complex architectures on conducting surfaces. e

Rigid-rodsz-stack architectures composedpebligophenyl rods Au-1-2
and naphthalenediimide (NDIJ stacks were selected to explore ARAN 13
zipper assembly. The design was as follows. To initiate zipper
assembly, shorp-quaterphenylsl with four anionic NDIs are

eeees e 2 .
deposited on gold (Figure 1, Supporting Information Figure S1). NP

For propagation, double-lengfhoctiphenyls2 with eight cationic (P el L 3
NDIs are added. Directed by flanking hydrogen-bonded chains ' jelelelle & e Ao~
(Figure S2jand interstack ion pairing (Figure S3), one-half of these H'}_
R Au123  2R=
NDIs was expected to form-stacks with initiatorl. The free half TER N o 3 R< Sﬁ o
of the cationic propagat@remains available as unbendable sticky- == s H s ShR=Yo
ends on the surface to zip up with the anionic propagaiadded Figure 1. The concept of zipper assembly on gold. All shown suprastruc-

next. The resulting anionic sticky-ends can zip up with cationic tures are simplified, in part speculative representations that are, however,
propagato® and so on. This zipping up afsemiconducting NDI ;:qoc:]ds:j;?nt with experimental data on function (below) and molecular
stacks alongp-semiconductingp-oligoanisol rods could produce '

supramoleculan/p-heterojunctiond. Importantly, the photo- and
electrochemical variability of NDIs without global structural
change% promised access to multicomponent zippers where the
direction of electron flow is controlled and light is absorbed at
various wavelength.

For zipper assembly, thequaterphenyl initiatod with anionic .
NDIs and a disulfide anchor was synthesized (Schemel®S1). 45 s ss0 800 60 700 780
Moreover, the already availabpeoctiphenyl2 with cationic NDIS A(nm)
was complemented with the anionic propagadofScheme S2). Figure 2. Zipper assembly on gold nanoparticles. (A) Change in absorption
The blue, red-fluoresceptoctiphenyl2 has been shown to exhibit ~ during assembly of a zipper (sequence A@-3-2-3-2) with increasing
ultrafast (<2 ps), quantitativet97%), and reasonably long-lived g_b;c’(rc‘;tfﬂ_f_tfg%ln’(Té)og;’n‘q’f fgf?ﬁgiggﬁsn ézo(“;j)' é‘i‘&%;(ﬁti};_ﬁ
(61 ps) photoinduced charge separatignduo = —5.4 eV,ELumo and (c) Aui-2-1 + 2 (c, all in 50% aqueous TFEY.
= —3.5 eV, Table S1}.10

Zipper assembly was initially evaluated on gold nanoparticles
(Figures 1, 2)! Freshly prepared, citrate-stabilized gold nanopar- maximum around 600 nm indicated significant face-to-faestack-
ticles @ ~ 13 nm) were coated with initiatdr, and then repeatedly ~ ing of the NDls in the zippet.
exposed to cationic and anionic propaga®end3. Zipper growth Zipper assembly with cationic ends (A2) could be effectively
was evidenced in absorption spectra of the resulting coated terminated using anionig-quaterphenylsl. The addition of
nanoparticles not only by the expected increase in NDI absorption terminatorl to an Au-2 zipper caused the expected 50% increase
around 630 nm but also by the bathochromic shift of the surface in NDI absorption of Aui-2-1 compared to Aut-2-3 (Figure 2,
plasmon resonance (SPR) band near 520 nm, providing an accurat€urves b). Addition of propagat@to the terminated Au-2-1 did
measure for the increase in layer thickness during zipper assembly0t cause any increase in absorption, whereas addition ta-Au-

(Figures 2A and S4P Moreover, the appearance of a hypsochromic  2-3 resulted in further increase of absorption, proving the formation
of Au-1-2-3-2 (Figure 2, curves c). This complete inhibition of

t University of Geneva. zipper assembly with terminatdr demonstrated the existence of
* University of Neuchtel. sticky-ends in zipper assembly. Moreover, the found rod-length
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Figure 3. Zipper assembly on gold electrodes. (A) Change in photocurrent
during assembly of a blue zipper (sequencelA2-3-2-3-2-3-2, solid) and

a capped control zipper (Al-2-1 + 2 + 3+ 2 + 3 + 2, dotted) on gold
electrodes (Conditions2, 3 (~10uM) in TFE/H20 (0.5 mM NaHz-nPOy,

0.5 M NaCl, pH 7) 1:1, room temp, 14 h; rinsed with®and EtOH). (B)
Dependence of photocurrent on number of oligo-NDI layers of the blue
zipper @) compared to blue LBLs (Ad-pK-3-pK-3-pK-3-pK-3-pK-3, pK

= polylysine,+) and the capped At-2-1 + 2+ 3+ 2+ 3 + 2 (0).10

various surface characterization studies are ongoing to gain ad-
ditional insights on structure, the here reported studies provide the
ultimately relevant functional evidence and promise attractive
perspectives. Preliminary results on increasing zipper complexity
with differently colored NDIs to address more challenging functions
are very promising.
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